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Abstract 

Using the linearised theory of general relativity the gravitationally radiated angular and 
linear momenta from a galactic model of N gravitational radiators is calculated. The 
results are presented in terms of the lowest order contributing multipole moments 
(quadrupole), the orientations of the radiators about a common reference frame, the 
distances between pairs of radiators and the frequency of each radiator. This work is a 
continuation of an earlier work in which the galactic model was first proposed and its 
gravitationally radiated energy flux was computed. 

1. In troduction 

In an earlier paper by the present author (Booth, 1973) a Galactic Model 
was proposed and its gravitationally radiated power flux was computed in terms 
of the quadxupole moments of the individual galactic sources and their mutual 
separations. In this work the model is taken a stage further and the gravitationally 
radiated angular and linear momenta fluxes are computed-again in terms of 
the quadrupole moments of the galactic sources and their mutual Separations. 

The gravitationally radiated angular momentum emitted by a pair of sources 
has been previously found by Booth, Cooperstock & Rumsey (1972) but, as 
in the case of the previous work on power emission, the restricted orientation 
imposed on the separation of the sources prevents a galactic model being 
constructed from arbitrarily orientated sources and so the problem is here 
reworked without restriction on source orientation. 

Whereas a single isolated source will only radiate linear momentum flux, at 
the lowest multipole order, through the quadrupole-octupole mode (Bonnor 
& Rotenberg, 1961, 1965; Papapetrou, 1962; Peres, 1962) it has been shown 
by Cooperstock & Booth (1969b) that quadrupole-quadrupole linear 
momentum flux does exist for pairs of sources as a consequence of their 
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mutual interaction. Again this work was performed under the imposition of 
restrictive source orientations and, as the energy and angular-momentum 
formlations had to be reworked, so is the linear momentum formulation. 

2. Angular Momentum Conservation 

In special relativity the energy-momentum tensor T / f o r  a material stress- 
energy distribution has a vanishing divergence 

r / ,  i = 0 (2.t)  

and consequently readily lends itself to integral conservation laws of energy 
and momentum. However, in the theory of general relativity the covariant 
generalisation of equation (2.1) is the vanishing covariant divergence 

1 
TJ. =-- g) (~/(-g) ZiJ),j --  glm, i T I m  = 0 (2.2) t;1 ~/( -  

which does not readily lend itself to integral conservation laws. The reason 
being that there is now a gravitational field contribution to the energy and 
momentum which is not contained in the energy-momentum tensor Ti j. To 
include the gravitational field as welt as the stress-energy distribution in 
generalised concepts of energy and momentum conservation, pseudotensorial 
quantities t / a r e  constructed from the field variables in such a manner that 
these auxiliary quanties, together with the energy-momentum tensor T j ,  have 
a vanishing divergence in like manner to equation (2.1). This construction, 
which can be achieved in an infinite number of ways, was performed by 
Landau & Lifshitz (1965) who were able to develop a.n expression for the 
gravitational field energy-momentum pseud0tensor t J which contains first z 
and no higher derivatives of the metric tensor gij (M¢ller, 1966) and which, 
moreover, is symmetric making it possible to define a conserved angular 
momentum for the material distribution plus the gravitational field in a 
natural manner. 

The Landau-Lifshitz pseudotensor t il satisfies the equation 

( - g ) ( r  '~ + t ~j) = hiJ1,l (2.3) 

where? 
h tjl = ¢4 

167rG ( (_g)(gJigtm _ gJlgjm) ),m (2.4) 

clearly 

hollj -- 0 (2.5) 

so that the four-momentum for the matter plus the gravitational field 

pi = le f (-g)(TiJ + tij) dSI (2.6) 

~- The system of coordinates is chosen so that g/] ~ diag (-I ,  1, 1, 1) as r --, ~o. 
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satisfies the conservation laws 

p i .  =0 ,I 

The generalised angular momentum tensorL~C~i/is defined in terms of the 
generalised four-momentum density as 
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(2.7) 

1 f (xih]lm, m -- xJhilm, m ) dS t (2.8) 
C .I 

Angular momentum conservation can be expressed by the condition that the 
angular momentum densitY has a vanishing divergence 

{ x i h j lm ,  m --  x / h i l t o n } ,  1 = 0 (2.9) 

Hence, choosing the hypersurface x ° = constant for the integration in equation 
(2.8) it is readily shown that the radiated angular momentum flux is given by t  

dL~i 
- ~ (--g)(xit ia -- xJti~)na dS (2.10) 

d~- s 

where the surface S bounds the volume containing the material distribution 
and is chosen sufficiently remote enough to make the material stress-energy 
tensor vanish on S. 

The angular momentum flux emitted by a single isolated source has been 
found previously to be given by the expression (Morgan & Peres, 1963; Peters, 
1969; Cooperstock & Booth, 1969a) 

dLe 8 e ~  d L e & r  2G/~w~t~  
d r -  2 dt = e 6 ~ ' 5 c  4 

(2.11) 

where 

D ~ = d ~ - ½ 8 e~ d vv (2.12) 

is the quadrupole moment of the source and~ (Papapetrou, 1962; Booth, 1973) 

d at~ = f T°°~a~ ~ d3~ (2.13) 

3. Interaction Angular Momentum 

Using Einstein's linearised metric the Landau-Lifshitz pseudotensor can be 
written in the form§ (Cooperstock & Booth, 1969a) 

(_g)di = (-g)dJ (3.1) 
n~ is the outward drawn normal to S. 

$ x ~ is a field variable and ~ is a source variable. 
1o) § Where g//= diag (-1, 1, 1, 1) .~)iJ¢o does not contribute to equation (2.10). 
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where 

and where 
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¢4  
l',Trij , t r im _ t iri t l  ~!(jm m 

(--g)si]  = 1 6 n G  l ~  ,1 ~ ,m 

(O)il(O) -*-jn . t ,  mp (°] j l~)  ~t.in a,rnp 
- -g  grnn  W ,pUe , l - - ~ 6 r n n  ~ ,pVe , l  

+ ~ f (Zgnpgqr  - -  g p q g n r ) g "  g " tit " , IWt 'n ,m 

+ ~) (O)~npqfll xrtjm 
8 1 m 6  ~ ,n  ~ ,pJ  

4 G  ~ • d V  
%J = J T /  (t - (3.3) 

where 

N (a ) .  

~i j = 2 ~0/ (3.4) 
n = l  

From equations (3.1), (3.2) and (3.4) it can be seen that equation (2.10) 
consists of two types of integral; one type containing terms quadratic in the 
field of a given radiator and the other containing products of fields of pairs 
of radiators. The sum of all integrals of the former type yields the angular 
momentum loss of the radiators in the absence of interaction and the latter 
integrals yield the interaction angular momentum flux between pairs of 
radiators. 

As in the calculation of the galactic power loss (Booth, 1973) the retarded 
potential field solutions of Einstein's linearised field equations must be 
expanded about the retarded time t - F/c to yieldS: 

- i"  4 G  f - . .  d V  

T q = T q ( t  - ?/e) (3.6) 

The geometrical arrangement is illustrated in Fig. 1. 
It should at this stage be mentioned that whereas in the galactic power loss 

calculation the wave functions were only expanded up to order r -1, here they 

q; T h e  w o l d  '~ad ia tor '  is used  t h r o u g h o u t  to  d e n o t e  a s t ress-energy d i s t r ibu t ion .  
$ A bar over quantities implies a specific radiator, except where otherwise stated, 

i.e. equation (3.24) et seq. 

(3.5) 

(3.2) 

are retarded potential solutions to Einstein's linearised field equations. 
The galactic model consists of a material distribution of N gravitational 

. (n) " 
radiatorst (Booth, 1973) and if gJ/denotes the field of the nth radiator, the 
total field is given as 
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Figure  1. 
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must be expanded up to order r -2 as the numerator of  the integrand of  equation 
(2.10) is of  order r 3. The contribution to the angular momentum flux will 
then arise from the terms of  order r -a in the wave function p roduc t s - the  
terms of order r -2 vanishing, as they must, in order that the integral will 
converge as S ~ oo. 

Now, 

=(~ -~)~ 
= F 2 - 2~?~  ~ + ~ (3.7) 

where ga are spatial source variables and/~  is the source point to field point 
distance. 

Hence, 

( e -  K) = G f  ~ - 1 ( ~  _ (Gg~)}  + o(e_2) 

- ~'ce 1 1 na~ 
~g - e t - ~ -  + o ( e  -3) (3.8) 

Substitution of  equations (3.7) and (3.8) into equation (3.5) yields 

4G f i -  ra ~ij 

4° I 
(3.9) 

where 

ffq ~ tTa~a~Fq _ ½(~a~-a _ [~a~al2)~ijo (3.10) 
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Equations (3.9) and (3 . t0)  in conjunction with Booth (1973) give the 
following field components to quadrupole order as, 

2G - c~ 
~ ( t  - f/o) = ? 7  a ,oo 

~ao( t_F /c )=  2c~ aa~ooff# +c-~F 2 -aZ~,on~- 

where 

=   O oooo.  + 

a ' ~  - d ~ ( t  - e/c) (3.12) 

Equations (3.1 I)  give a radiator field expanded about a retarded time relative 
to its own centre of  mass and since we have a number of  radiators it will 
eventually be necessary to expand the field of  each about a common retarded 
time t - r/c. Meanwhile, f rom Fig. 2 it is seen that, for asymptotic  fields, 
since 

f =  r - / S  (3.13) 

then 

and 

~m = r m {1 2naff~ ff~E~ ]m12 ,- + - -Y-I  (3.14) 

f 1 
n = - = n + - (.n_nfl~ a - i f )  + O(r  -2) (3.15) 

r r 

3 

O t* 2 

F i g u r e  2 .  
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Using equations (3.13) to (3.15) equations (3.11) can be expanded about the 
retarded time t - r/c + n~La/c to yieldt 

2G- (~  2G {j~,oon~/ ,  r + J~t3ooo [n,rna[,r[ 8 _ / v f f q }  
~a¢ = ~ d ,oo + ~ 2 

(2a~(oont3n~/[ v - a~,ooL-e + da~,ont3 ~ o _  2G da~oon + 2G 
- e4r 

Too= 2__G_G -c~ o 2__G_G f33a~,oon~n~n.~ff.~ 
c4 r d P, oonan¢ + c4r2 ( ~,o 

+ 3d~onen~  - ae~,oo(neff,~ + n~ff, ~) 

+ d'~'°°°2 nc~n[3 [n,yn~[~[ ~ - [3'[71 } (3.16) 

The derivatives of these wave functions (which are listed in Appendix A) are 
then combined with equations (2.10), (3.1) and (3.2) to yield the time- 
averaged interaction angular momentum flux between the pth and qth 
radiators as 

4rr 

o " '  3 %  r,,, ,,, l (,,~_ -- ~- dPa, oort@npno + yd P, oon@ +[---J I a~-",ooo 

+ a~,ooo,,~,,~,,~.o +,t%oo, , , ,~  a ,ooo.~.~j)t a~ 

° 
............ [ 3dq)O, oonp 

- 4~rc 4 
4~r 

- ~ °  ~d~,oo~o + ~'~ L ]fd ,ooo -- -~ ct ,oorlonpncx + 

(p) (p) 

+ d p~r d~O, ooonpn ~ d~2 + dP°,oooncnnnpne ,ooonq~n o - 

t The delay at this stage in not expanding about t - r/c is for computational ease 
only. 

24 
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_ 4rrc 4 f (1 r , , ,o ,,)o] t , , ,  <,, 

4~r 

(,) (,) r (,) (.) 
- - + d  ,oood P, ooo 2dPOooodPa, oo ° [dPP oood¢~ooo <io~ <.,p 

where 

and 

--4~O¢,000~P~000] ncnTr --"ffP~oooff¢~ooonpnencn~r})} d~2 
(3.17) 

dr2 = r -2 dS (3.18) 

=--d:"tt-.l<+k.m< ) i = p , q  (3.19) 

Taking the ith radiator to be periodic (Booth, 1973) with frequency ~ ,  then 

>--,o 
where A av is a complex amplitude and ~)is a phase angle. Thus 

,) o %~ 
d a~ = Re de (3.21) and 

% ° [  ") " ]  / "' sin'~.n~%¢(t-r/c)}uc d~ Ptt - r/c + L .  n/c] + _ _ _ _ = t c o s k .  n i (3.22) 

where 
( l )  ( l )  

==- colic (3.23) 

When equations (3.20) to (3.23) are substituted into (3.17)for the pth and 
qth radiators, a typical product in the integrand of equation (3.17) then 
becomes. 

J % o o X , , ~ , o o o  + '  ~ " ' ° ° ° ~ ° ' ° ° °  : ½ / d ° ' ' ° ° ° a ~ ° ' ° ° °  - c o s  _ _ . _~ 

+ {>ooo>ooo+>ooo>,ooo) ' "  '"' o] ~o~ Lt_,<-_~ ) . 
(P) (q) 

½/a~oood,~,oo ° %< <_,! ~ t rl<,> ,,,'~ + +d ~,ooo,~' ,ooo/~i. Lt~ + ~).,_,] 

' < "  <~' ° '" "-' ' 7g <~ .] 

(3.24) 
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where, on the right-hand side of equation (3.25) 
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cl ~ - d ~ ( t  - r / c )  

") u~ ,~ i = p, q (3.25) 
3~ - d ~ ( t  - r / c  + ~/2~o) 

To facilitate the computation of equation (3.t7) 
(P) (q) 

ppq = k + k = .pq~_ 
c,~ (o (3.26) 

~ppq = k - k = *ppq*~ 

and defined, where ~ and *0 are fixed unit vectors which specify the orienta- 
tion of Op and Oq relative to the common origin 0.~ 

From equations (3.26) it is seen that 

_Ppq. ~_ = ppqflo~n a 
(3.27) 

*~pq. n = *.pq *~laYlo~ 

In order to evaluate the integral of equation (3.17) it is required to evaluate 
integrals of the form 

f na, n a . . .  nc~ m exp (,rondo) dr2 (3.28) 
4~r 

and a detailed discussion of this integral is located in Appendix B. Equations 
(B.3.1) to (B.3.5), (3.20), (3.24), (3.25), (3.27) combined with equation (3.17) 
yield the time-averaged interaction angular momentum flux between the pth 
and qth radiators to quadrupole-quadrupole order as~ 

{(~  (P) 0l) (P) (~/) 

a ~ ~ ' ~ o o o - d  ~*ooa~,ooo - ~  ~ - = - -  - - d  ,0o a ,0oo <.~%,,> ~ %0 

+ (sin.,,,, [ - . #  + 3 . #  - 3 . # ]  

+ cos . . .  [ -2 . ;g  + 3.#1) + [ a % o a % o o -  a % o a ~ % o  

(p) (e) (~) (e) \ 
+  '.ooa°tooo-a%oa'.ooo)(sin *,..I-*.;4 + 3 . , #  

- 3*p;gl + cos %q [-2*p;g + 3*p;~]) + [a~%o8%oo/̀ " " 

q? Op and Oq are the centres of mass of the pth and qth radiators respectively. 
~: (~ ~ )  could be evaluated to higher multiple order by retention of higher order 

terms in equation (3.9). 
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(p) (0 (P) (~) (P) (~) \ 

- a ~*, ooa ~,  ooo - d~*, ood ~ ,  ooo + d °*, o J  ~, ooo) ,~ +,~. 

• (sin ppq [PtT~ - 9Pp 3 + 15PtT~] + cos ppq [4p~  - 15pt~4]) 

/~P) ( 0  (P) (q) 

, - da~ ,ooa~" ,ooo  + d - ~ * , o o d ~ , o o o  

- 5'~¢,00 d2~n,ooo)*h**fi n . (sin *Pro [*Pt;~ - 9*PtTq 3+15*pp,~] 

4 r/<, ,) ._ , , > .  x<., 
+ cos *Pro [4*p;g -15*pt~ ] ) + t t aO~,oo~o - a°~,ooO~)a°~,ooo 

[01) ~ -- (P) \ (O (q) \ (p) 

+ {a~,ooh~ a~,oo,~)a°~,ooo-'<" - (~- ,oo~o-  d ~ o o ~ )  ~O~,ooo 

- - {  ~ ' 0 0 / ~ ° ~  (,) X(,) "I P p q [ - Y i P p q - -  YiPpq -~oo~)~O~oooj~° . (~ io  , _, ~ _~ 

[ -  ~ppc,, - !~-p,~qa]) - d~t',oo~a 

_~'~oo,~)~>O~,ooo i<'>~+ <,,, ,<,> - t d ,oo~-,t~*,0o,~) d°~,ooo 
I (p) (P) x (*t) l(q) 
(~,oo~o-~O~,oo~)~O~,ooo !~ - ,oo~-  <'-' " 

(P) -I 
- / " (s in  r 1 , _ - 2  _3,^ - 4  1_~5,n-6 ] X d a ~ o o o  *nq~ , . *Ppq [--~i ppq - 4 ppq + J " a t.pq J 

r 1 ,__--3 [((P) (P) ~) 

(a) / (0 (a) \ (p) 

~°° t, ) x ,ooo + d #0 oo*ha - db'C, oo*h~ daa ,  ooo 

(q) "~ (P) -I 
) J r 1 " - - 1  ~3*r*-3"1-ff-5*r'-5] - d a ¢ o o * ~  cTa~oo o *he .  (sin *#pq|--:~ p p q - - 4  ~ ' p q - r a  t-'pqj 

! S , - 4  [(<*')#¢ . '~'?o~ "~ 
+ C ° S * P p q [ i ½ * p P ~ - -  -4- P p q ] ) - -  d ,00 n a - d  , o o * a ~  
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~)0"0 I(0 ~b (0 x (p) 
x ooo oo, o  O%o,O0 O%oo 

(p) (p) \ (0  / ( 0  
a~*oo%-a~*oo%) aoo ~ I a % o %  - -  , , , 00  u + 

(o \ (P) 1 
d a¢ a t d ,ooo r~¢ (sin 1 - 2  3 -4. 15 _-6-~ -- ,O0"fl/ " Ppq [-- ;gPpq -- "#Ppq + -4-Ppq J 

r/, . , ,  ,%~ 
1 - 3  1 5 _ - 5 , , * _  Ltdfl  ,ooZe `p, \ + COS ppq [--TPpq + - d ,ooo --4-Ppq J) Ppq - de¢,ooh~) 

lcq) ¢ ^ (o \ (p) /(P) (P) \ (q) 
+ (a/3O, ooh e -- deO, ooh~) d¢~r, ooo (d~ , o o ' o - d e t o o ~ 4 d ~ , o o o  - 

lCq2 (q) \ (p) -1 
- -  2Ppq d % o o o ]  . (s in ppq [:ppq - 9 -3 ( dflC, oohe - 3a~,ooh~) fz. 1 -1 

15 ^--53 ppq[2pp~ -- 15 ^-4T', _ d  ° + "-'2-PpqJ + COS T P p q  J) - d~O, oofto~ ¢,oo ft . d % o o o  

, (d<oo~o - d e t o o ~ )  ~ , o o o  - , t ° too~)  a%ooo + 

/ ( 0  (q) ', (P) l 
_ (  ¢, _ - ¢ ,  A)-% ] ~ . ( s in* , '  r , , _ - 2  9_,^-4 d [J oofZ a d ° oon# d ooo *nn vpq ['2 P p q - - 2  Ppq 

+.~*p;q6] +COS*ppq[2*pp3 1 5 . - 5  [ ((~/}~ ^ -- -2- Ppq])f)pq + !00"t7o 

~°%o%) d%ooo + (a~ ,oo *.5 d%o%) a%ooo 

lU,) 
+ -da~,oo*fz~)  d%ooo + td~O, oo*ho (a~,oo*~° "-' ~ ,_,, t,_., 

(q) \ (p) l 
- ~ ) -  ] .(sin*,, rL*"-l-- 2"^-3 -'- 15 *--51 - -d°O,  OO*rl dd)~O00 *flzr t~pqt2 t.'pq 2 I J p q ' - ~  PpqJ 

[C p) (P) ~ \ (q) + COS *ppq [2" /0 ;  2 --  15"^-41"~2 ~pq J~' - d~C~oo*no, - d °~ ,oo*h~)d~ooo  

- " ~ '  '~ - (a~t oo % - '" - d°O, o o * n 3 )  d~"r, ooo (d ~ ,oo*t~o (q) \(~) d°C, oo*h~) 

(a) ((q) (0 ~) (P) l 

x a%ooo + a~*,oo*% - a°%o*,~ a%oooJ , ~ .  
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1 - 2  9 ~ - 4 .  15 ~ - 6 1  (sin ppq  ['~ppq --  -~ppq T --~-ppq ] + COS ppq  [2pp 3 15 ^ - 5 1 x $ _  • - -  "-'2"-PpqJ) Ppq 

[(¢v> c v ) ~ \ ( q )  ~ca) 
+ d B t o o ~ _ d a ~ , o o r ~ [ 3 )  d P ~ , o o o + l d , ~ , o o h a -  d a ~ , o o e ~ )  dPO, oo O c a >  \ . ' >  

- _ 

x % ~ p  ho- • (s in 1 -1 p,,,; [-~p,,,, + ~p; ,~-  ~ p ; ~ ]  

t-.~, +-4-,~pq.-Lt~ . ,oo,~o-,,Otoo,~,),,.~,ooo + COS p p q  5 - 2  105 _ -41",,. r/(P)^~b ~ (P) \ Cq) 

/ (a~c~ (a) ~.~ '., ¢0 / (P) (P; \ ('0 

_ ~ ~ ~o _ a % o , ~ ) a , ~ o o o  ~ ,  ,oo~o ~ ,oo~d~ ooo+F~,oo,~o 
(q) : (P) "1 (~oo,~o- ~,O~oo,~),~Ooooj.,~o.,~.,~o 

• (sir, *o r ~ , . - , - :  ~ * , o ~  . pq  ~ - , ,  . p .  + - ~°4~*p~6] + c o s  *,, r ~ . , . - s  t~pq t - -  2 ~pq  

+ ' ~ * p # l ) ~ , , , ,  + Ira" , oo% -,~°~,oo*~) aptooo 

[ ( a ~  ca) ~ \ o,) /or,) 

cp) \ (q) /ca> C~) \ (v) "I 

- a°too*,~ 4 a~tooo + [a~too*~o - a % o . , g  a~toooJ 

x * ~ * ~ p * ~ o . ( s i n  *,, r 1 , ~ - 1  . 4 5 5 ^ - 3  1 0 5 5 . - 5 7  ~'pq t - - 4  v p q  T ---4- Ypq  --  4 Mpqj 

~_.~-~ ~.p-~,~ [t~-oo.,~_~Otoo.,~)d~ooo + COS *ppq [ - - 2  I-'pq + pqa., - -  

% -  ~,oo oo,,~4 d,,~ooo _ ia,~too,,~o_ aO~oo,,~4 

¢a> i(e) 

- - a°too*,~,~) ~'toooj ,~o,~,,,~o x a"",ooo + [ a~ ' too* ,~o  "' \ ' '  " 

(Sil l  ^ r 1 ^ - 2  + 45 ^ - 4  __ 105 ^ -61 [--L~PpqS -3  + TPpqj)105 _ -5"m • 19pq [--2I.Ppq -'4-1Opq -'W-Ppq ] + COS ppq  
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/ (P) (e) (P) (a) \ 

x *ppq + [d~,ood~r, ooo 

3 -2  

[ ( P ) ~  (e)Tr,r¢ (P) (,¢) \ + + a~,ooa'%oo) (*'~a'~ ~ d~'~',ood ,ooo - na *n[3 ) Ppq 

(sin*p ' ~ 3 , _ - 2  - -  1 5 , _ - - ' 4 " ~  • Pq[--'g PPq "r-K PPqJ + C O $ , p p q [ ~ , p p l  _ "gg*~-3ppq _ "-g-15 ,~-51-~ppq J) 

+ 

7 - 3  5 -5  • (Sill  ppq [~p;2  __ 3pp-~ + i_~_pp6] + COS ppq [ _ ¼ p ; 1  + ~ppq __ i.~ppq]) 

[ (p )  (q) (p) (a) \ 

+ [,~",oodS~,ooo + ~,ooa~,ooo) ( % ~ e -  '~a*'~e),~q 

. (sin *ppq r3 , _ - 2  , 1 ,  - i  t~ . ~ - 3 * p ~  +~*p~,~,]+~o~ p~[ -~  p~ 

[(I~) (q) (p) (a) \ 

+~,o-3 ~*~;~'1~+ td °S °~ -os -o~ ) 4 lapq -- ,ood ,ooo - d ,ood ,ooo 

7 -2  - 4  1 0 5  - 6  
× (h a *It e -- *l;lo~ fie) flighTr *ppq . (sin ppq [--'~ppq + 30ppq -- T P p q  ] 

/(P) (q) 
1 - 1  2 5  ^ - 3  l O S _ - S , ,  [dOS o~ 

+ COS ppq [~ppq + + -- -2-Ppq --2--Ppql) ,ood ,ooo 

[ ' 7 , ~ - 2  , - 4  1 Q S , t a - 6  ] r l , ~ - t  
• (sin *ppq t - - 2  t.,pq + 3 0  ppq -- 2 t..pqj + COS *ppq I.~ Ppq 

- -  7 2 5 " - - 3  ~ 1 0 5 , ~ - 5 r X p p q  "r ""32-- Ppq J) + [dPa, ood(mr, ooo - dP~,ood~,ooo ) 

r15 _ - 2  1 0 5 ^ - 4  
X (no~ *fl e -- * f laf le)hpnahsh~r *#pq .  (sin Pm t-KPpq -- " -Evpq 

+ ~ r ~ p p  61 + COS ppq [__{p ; l  "r-- ~ppql05- - 3  - -  --g-Ppq945 _ -51",] ) 

/ (p) (q) (~) (,0 \ 

+ (dP°,oodS~ooo + aP~,ooaq'~ooo) (*naee - na *he) 
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X *hp*fta*hO*flrcpp q (sin *p rI5 . _ - 2  __ 10~5,c -4  + 9 4 5 ¢ n - 6  ] • pqt'-g" Ppq z t-'pq ~ t-'pqj 

-t- COS *n f ! , ^ - 1  -- 105 , ~ . 3  945. t :_-51~.  ((P) (~) 
r.pq t - -8  I..'pq "r -~'-- ppq --  --if- p p q j }  T dOP ood~ ooo 

(~) (q) (P) (q) (~) (p) \ 

- -  , 0 0  ~ , 0 0 0  - -  

• 5 - 2  1 5  ^ - 4  1 0 5  _ - 6 1  X (flc~ *lift -- *flezflfl)flCfl.rr *ppq (sin ppq [~Ppq + "-4-Ppq -- "-'g-lapq ] 

[ (P) (q) (p) 
+ cos ppq[-  ~ pp,~ + { p;~ +!.~ p#])+ [dP#,oodCCooo _dP#,o ° 

(q) (P) \ 

(q)~r (') (q) O) x d ,ooo + (2PP, oode~OOO - dO;,oodO~oo (*haftS3 - ~a*h~) 

+ + c o s  x *flO*~Tr.ppq(Sin *ppq t8  pq 

r 1 , ~ - 1  5 . ~ - 3  . ~  X [ - -g  Ppq + 8 tapq +~Og~ . ~ ] ) t  (3 .29 )  

The total interaction angular momentum flux from a galaxy of N such 
radiators is then 

N 
(tot £°~)= ½ ~ (~a~pq) (3.30) 

P,q=l  
P ~ q  

If, in equation (3.29) the limit is taken a s  ppq "+ 0 and •ppq ~ O, then 
{ (p)  (q) 

4G [ -~d~'r °°dCq°°° (') (q) Lim (£k~pq)= ~ -d~,ood~,ooo j (3.31) 
PPq } "-+0 

* ppq 

letting p = q in equation (3.31) yields twice the angular momentum flux from 
the pth radiator in the absence of interaction (Cooperstock & Booth, 1969a). 
Consequently, the total angular momentum loss rate for this galactic model is 

N 
( tot ~c~°c~/3) = ½ 2 ( ,~c~% ) ( 3 . 3 2 )  

p , q = l  

where 
• 

JAm (3.33) 

*Ppq p=q 

Equation (3.29) is fully consistent with earlier work by Booth e t  at. (1972) 
in which stress.energy distributions were restricted to have their centres of 
mass lying on the common z-axes. 
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4. Interaction Linear Momentum ~Tux 

If i is set equal to X(X = 1,2, 3) in equation (2.6) and the integration is 
performed over the hypersurface x ° = constant, an application of the Gauss 
theorem yields the total linear momentum flux (Cooperstock & Booth, 
1969b) 

f~x = - ~ ( -g ) t~na  dS (4.1) 
s 

where S is the surface bounding the radiator-pair volume. This is in complete 
analogy with the energy loss-rate of Booth (1973)• As in Section 3, equations 
(3.1), (3.2) and (3•4) allow the division 

+ q& + i . &  (4.2) 

where pPa and q/~X are the linear momentum fluxes from the radiator-pair 
in the absence of interaction and intl'}, is the flux which arises from their 
interaction. It is of interest to note that 

p/~X = q/~x = 0 (4.3) 

to quadrupole-quadrupole order (Bonnor & Rotenburg, 1961, 1965; 
Papapetrou, 1962; Peres, 1962). However, to this order int,bT, =~ 0 and it is this 
term which is now derived• 

Proceeding as in Section 3, equations (3.1), (3.2), (3.16) and (3.24) com- 
bined with (4.1) and (4.2) yield 

• G 
[ Pa~oooDq/°,ooonan~nvn ~ - 4P~Y oooD~V, ooonen ~ 

4rr 

(P) ~ (qO_.ra ] 
+ 2Da~,oooD~,ooo } nK d e  (4.4) 

to lowest multiple order. The integration of equation (4.4) proceeds in an 
analogous manner to the power flux calculation of Booth (1973). Equations 
(B.3.1) to (B.3.5) with equation (4.4) yield the linear momentum flux 
between the pth and qth radiators as 

intPx = 3-~C 6 t~Da~,oooD"'~',ooo + DCe~,oooD7 ,O00)/~c~r~7~/~X 

.(cos ppq [-pp~ + 105ppq 3 -  945pp s] +sinppq[15pp~-420p;  4 

+ 945pt7~] ) ~/)U~oooD"'a,ooo + -- D'~,oooD'ra,ooo) *nc~ *n~ *hT*n~ *nx 

• (cos *ppq [ - * p ~  + 105*ppq 3 - 945"p;~1 + sin *ppq [15"&72 

- 420*p;q 4 + 945"p;~]) + (DaT, oooD~V, ooo + Da'r, ooo D:ev, ooo) t~ahfn~, 

25 
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.(coSppq[4p;~- 1 0 0 p ; ~  + 4 2 0 p ~ 1  +sinppq[--28p;~ + 240pp--~q 

[ (P) (o  (p) (~) \ 

- 4 2 0 p ~ ] )  + ~/Sa~,oooDt33' ooo - Dc~,oooD~ooo ) *~c~*~#*rax 

• ( cos  *ppq [ 4 * p / ~  - 1 0 0 * p ; g  + 420*ppqSl + sin *Pro [ - -28"p; ,~  

/ <J,) (q) (p) (~ \ 

+ 240*pp-~ - 420"pt761) + [/)a~,oooDa~,ooo , + D' %ooD %oo) x 

. ( cospm [ - 2 p ; q  1 + 2p;q s - 3 0 p ~ ]  + sin pm [2p~q 2 - 12p~,~ + 30p~6]) 

/ (P) (e) (p) (q) \ 

+ ( a ooo"a;ooo - Z'a;00o a ooo) 

. ( c o s  *pro [ - 2 * p ; q  ~ + 2*p ; ,~ -  30*p~Sl + sin *ppq [2*pi, ~ - 12*p;  4 

[ (p) (q) (~) (o (P) (O 

+ 3 0 * p ~ ] )  + [/7~X oooD"/',ooo + D~X ooo/~3"a,ooo + D3"a,oooDaX, ooo 

(p) (q) ,, 
+ n ~ 8  ~ a h  -'0" ,ooo~ ,ooo) h~h,yha. (cos Pm [-20p~Tq 3 + 210p~Tg] 

[ (P) (O 

+ [-=p;g + 90p;,,'- 2100;61)+ IZ %ooD%oo 
(i~) (q) (t'2) (e) ¢p) (~_~) \ 

max B')'a + DTa,oooDa~,ooo - DTa,oooDaX, ooo)*h~,*f~a *ha - -  .t.," , 0 0 0 z . ,  . , 000  

* , - 2  , - 4  . ( c o s  *ppq [ - 2 0 * p p  g + 210*p~ s]  + sin ppq [ - 2  tOpq + 90 ppq 

/ (p)' (~) 

- pqa) ~ . ', + Da~,oooDa"r, ooo + ~a ,  ha , ' ,  . 210*p -6~" +t/SaXoooDa"oo o " (2 .,, ( .)_ '~ *"  , 0 0 0  u , 0 0 0 J  

(p)  (~) 

+ DC~U, ooo/~aX, o o o ) e , r .  ( cos  ppq [16ptTq ~ --  60p,Tq s ] + sin ppq [4p ;q  ~ 

( l ~ a  (p) (q) (p) (q) ~. a3" rW~X ~a3"  - 36pt74 + 60p;~]) + ,oooO ,ooo - ' - "  ,ooou ,ooo 

(P) (a) (p) (q) \ 

+ D--'c~3',oooDaX 000 -- DaT, ooo.DaXooo)*h.F. (cos *Opcl [ 1 6 " p ~ - - 6 0 * P i ~  ] 

+ sin *ppq [4*p; ,~  - 36*pp~ + 60*pp~q 1)1 (4.5) 
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where 

(t) (o 
n ~ -na~( t  - r/c) 

/5 a~ -- D (t - r/c + 7r/2~) 
i = p, q (4.6) 

This then gives the total linear momentum loss rate for the galaxy as a whole 
a s  

N 

totPX=½ ~ pqPx (4.7) 
p , q =  l 

where 

to quadrupole-quadrupole order. 

ppe~ = o ( 4 . 8 )  

5. Discussion 

Whilst the present-day arena of gravitational radiation experiments is 
primarily concerned with the pure detection of energy-momentum carrying 
gravitational waves in order to confirm or deny Professor Weber's results 
(Weber, 1969, 1971), a time will surely come when technology will enable a 
more critical analysis of received signals. It is for this reason that the work 
in this paper and its predecessor was performed. It is hoped, at a later d~te, 
to complete this work with some numerical calculations based on current 
astrophysical data with the desire to present an idea of the orders of magnitude 
to be expected from specific galactic models. 

Appendix A 

In this appendix the spatial derivatives of the wave functions tisted in 
equation (3.1 6) are given. 

+ 3a~,oon ~ + 3c~°°°n,r(n¢n~E~E ~ - EvE~)} 

2G Of  7 

{d"~,ooon~n,~} - ~ r  z {3dc~,ooon~n~/n~E6 

- da~,ooo(nTE~ + n¢/S ~) + 3aa~,o0n#n 7 - da~,o o 

+ ½ d ~ o o o o n ~ . ~ ( . o n . E O E  ~ - E*C*)}  

(A.1) 

(A.2) 



350 DEXTER J. BOOTH 

~oo, r 2G [aa~,ooonan~n, ) 2G - = - e--; - ~ {4d~'°°°n~n~n"tnsL~ 

-  %oo(n nJ + + 

+ 6J~X~,oonc~n3n. r -- 2da~,oon a - d~,oon ~ 

+ lda~,oooon~nt~n,,/(n,nlrEOL-~ - EcE¢)} 

The time derivatives follow immediately from equation (3.16). 

(A.3) 

Appendix B 

B. 1. Averaging Products o f  Components o f  a Unit Vector 
The integrals to be considered are those of the type 

4-£ n ~ n ~ . . ,  n~ m exp i (pwn~o) d a  

41r 

where 

(B.1.1) 

d~2 = r -2 dS (B.1.2) 

where S is the unit sphere in 3-space with centre at the origin, m is any integer 
> 0  and (n 1, n 2, n3) is the outward directed unit vector normal to S. 

Write 

P = (Pl, P2, P3) = P(nl,/~2,/73) (B.1,3) 
where 

h. ~ = 1 (B.1.4) 

The work considered in this appendix is an extension of that done previously 
by the present author (Booth, 1970) where the following identity was used? 

t 
4"-~ f (d~n~)2p d~2- ~ p ~ )  (B.I.5) 

4w 

where p is any integer ~>0. 
An analogous identity exists for integrals of  the form (B.1.1) and the aim 

of the present work is, by use of this identity, to give a general expression 
which enables integrals of this form to be more readily evaluated when m is 
large and where the specific distribution of the normal components nl,  n~, n 3 
amongst the h a , . . ,  nam in the integrand of (B.1 .I) is not known. 

Clearly 

I f  4-~ noq na~ . . . nero exp i (p~nw)dg2 = ( - i ) m c  (m) (g.1.6) 

4¢r 

This identity is quite easily proved by letting d be in the positive z-direction and 
using spherical polar coordinates. 
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where 

and 

c(m) = ap~. :~ ap~ ~ exp i Cow. . )  d a  

141r f exp i (pwnw)d~ - Sinp p 

4~ 

(B.1.7) 

(B.~ .s) 

B.2. The Generat Expression for C (m) 
Instead of  performing m differentiations to evaluate C (m) an alternative 

procedure is given by the following expressiont, 

C (m) = D (m)~c~otia~ ~ . . .  fic~ m 

@ l  D(m-r) m-2r" ]--[ h(%~-~ 6C~m+ ) + (B.2.1 ) t 7 --s=o t=l 1-2t,°~m+2-2t)  

where 
D(m) = sin(p + toni2) 

P 
~ {  sin(p+m+rrr/2) r - ' /  m ~= ~ }  

r=  1 O 

(B.2.2) 

and§ 

Fn = m/2 if m is even 

= (m - 1)/2 i fm is odd. 

(B.2.3) 

B. 3. List of Integrals 
Using equation (B.1.6) or (B.2.1) the following integrals can be obtained 

r e = l :  

4zr n~expi(pwnc°)da=-i P sinp~ 4~r p2 ]fia (B23.1) 

t The general expression for C (m) was derived by inspection for m = 1, 2, 3, etc., 
and the form deduced for the general case. 

:~ The parentheses around the subscripts in (B.2.1) define the tensor symmetrisation 
procedure which involves all possible permutations of subscripts within the parentheses, 
e.g. 8(~3) = ½ { ~  + a3J '  See footnote below. 

§ ~% is thus defined to enable the general expression to be written in the most elegant 
form. Note that before performing the symmetfisation procedure in (B.2.1) we put ti~0 = 1 
and then symmetrise with respect to the remaining subscripts. 
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m=2: 

1_ f n~n~ exp i (Pton~) dr2 
4re 

4~r 

= [cosp sinp] (~_p 3cosp 

m = 3 :  

1 f n=n#n,y exp i (pwnw) d~2 
47r 

4~t 

sinp 3cosp 3sinp\ 
= i p2 p3 + 7 )  t~(aS#,,/) 

+ i (  cosp 6sinp 15cosp 
. . . . .  ~ p3 p + p2 

m=4: 

1 fn,~n~n,yn8 exp i (pwnto) dg2 
4~r 

= [_ sin p_  3 cos p 3sinpt 

cosp 6sinp 15cosp 
+ 

+ + 0 2 p~- 
m=5 :  

1_._ f no, n~n.rn~n,, exp i (p~n~)d~2 47r 

3 sin p) (B.3.2) p3 ~c~h# 

15 sin p) 
p4 ~,~t~h,r (B.3.3) 

15 sin Pt 

t05 cosp 105 sinp] 
p4 + p5 ] h~h/3~v~ ~ (B.3A) 

_cosp 6sinp 15cosp 15sinp 

i / s inp+lOc°sp  45 sinp 105 cosp 105 sinp ~ ~ ^ 
p6 

/cosp 15sinp 105 cos p ÷ 420 sin p 945cosp 945sinp~ 
+i~ P p2 p3 p4 + pS p-~ 1 

x h,~t~h3,h ~ ~r (B.3.5) 
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